Supporting NASA SnowEx: L-Band Interferometric Snow Depth and SWE Estimation

Elias Deeb¹, HP Marshall, Richard Forster, Cathleen Jones, Christopher Hiemstra, and Paul Siqueira

¹Cold Regions Research and Engineering Lab (CRREL) US Army Corps of Engineers (USACE) Engineering Research and Development Center (ERDC) Hanover, NH

SnowEx Workshop, Longmont, CO 8 August 2017

NASA SnowEx

How much water is stored in the Earth's terrestrial snow-covered regions?

- Multi-year (FY17 FY21) field and airborne snow campaign designed to validate sensor data with a goal to identify future snow satellite mission
- Using a combination of remote sensing, models, and ground-based measurements
- Feb 2017 field campaign
 - ► Grand Mesa and Silverton, CO
 - ▶ 3-week field campaign
 - ► International snow community
 - ► Over 100 participants

Radar propagation in dry snow

(modified from Guneriussen et al., 2001)

 ΔR_{ns} = Path length without snow θ_i = Incidence angle

 d_s = Snow depth ε_s = Permittivity

 ΔR_a = Path length through atmosphere ΔR_r = Path length refracted through snow θ_r = Refracted radar angle

Phase shift due to snow:

$$\int_{snow} = -\frac{4\rho}{\int_{i}} d_{s} \left(\cos q_{i} - \sqrt{e_{s}' - \sin q_{i}^{2}} \right)$$

Snow Water Equivalent (SWE)

- Water yielded when melting a volume of snow
- Depth * density (integrated) through the snowpack

Phase shift due to snow:

$$\int_{snow} = -\frac{4\rho}{\int_{i}} d_{s} \left(\cos q_{i} - \sqrt{e_{s}' - \sin q_{i}^{2}} \right)$$

$$j_{snow} \sim d_s * e_s' = DSWE$$

Guneriussen et al., 2001

Modeling Phase Change: ΔSWE

If majority of the signal is from the snow-ground interface, phase change depends only on density/depth, due to refraction & velocity changes.

Based on Grubler and Hiller, 1974; Ulaby et al., 1980; Matzler, 1996; Guneriussen et al., 2001

L-Band InSAR (PALSAR) Imnavait Creek transect, Alaska

Deeb et al., 2017, submitted

NASA-ISRO SAR Mission (NISAR)

- US and Indian, dedicated InSAR mission
- Level 1 Science requirements
 - ► Earth surface displacements, sea ice, vegetation biomass, cropland and vegetation biomass, natural and anthropogenic disasters
- Team is part of SDT (snow hydro) applications
- L-Band (23cm) and S-Band (12cm)
- 12-day (or shorter) exact repeat orbit
- 3-10 meter resolution
- Launch date: 2020

Airborne InSAR platforms

- UAVSAR http://uavsar.jpl.nasa.gov
 - ► L-Band (1 GHz/23 cm) interferometer
 - ► Gulfstream-III (G3)
- Microwave Remote Sensing Lab,
 University of Massachusetts, Amherst
 - ► S-Band (2 GHz/15 cm) and Ka-Band (26 GHz/1 cm) interferometers
 - ▶ Mounted on Cessna door

SnowEx (Feb 2017) UAVSAR Support

Flight Plan Report: edeeb33 0008 (SnowEx FY17 (Feb) UAVSAR)

Created by edeeb33 on Sep 20, 2016 at 1:06 PM. Estimated flight time: 4 hrs 18 min. Comments: Grand Mesa and Senator Beck Basin

UAVSAR SnowEx Acquisitions

- Three acquisition dates and two AOIs:
 - ▶ 06 Feb, 22 Feb, and 25 Feb (during SnowEx)
 - ► Grand Mesa and Uncompaghre Basin
- Slumgullion slide path (NISAR SDT request)
 - ► Additional acquisitions: 8 Mar and 31 Mar
- UAVSAR products:
 - ► Amplitude (backscatter) for each acquisition date
 - ► InSAR products based on acquisition pairs
 - Coherence and phase (difference)

06 Feb – 22 Feb 2017

UAVSAR SnowEx Results: InSAR Products

06 Feb - 22 Feb 2017 (16-day repeat)

Impacts of Vegetation

WorldView-3 (false color)

UAVSARamplitude

UAVSARINSAR coherence

UAVSAR InSAR phase

Innovative solutions for a safer, better world

Impacts of Vegetation

UAVSARINSAR coherence

N T

UAVSARInSAR phase

Innovative solutions for a safer, better world

Next Steps

	February 2017																			
	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
UAVSAR	X																X			Х
ASO			X								Х				Х	Х				Х
GLISTEN-A				x											Х	Х				Х

Table 1. Logistics for airborne acquisitions of UAVSAR, Airborne Snow Observatory (ASO), and GLISTEN-A showing coordination collections around Feb. 6-9, Feb 20-22, and Feb. 25.

► UAVSAR acquisitions coordinated with Airborne Snow Observatory (ASO) and GLISTEN-A

General SnowEx Meteorological Obs

